
FREE SAMPLE - Pragmatic DDD with Python 1

FREE SAMPLE

Pragmatic DDD with Python

AI will love your code

by John Macias

— — — — —

Chapter 2: The Three Pillars

FREE SAMPLE - Pragmatic DDD with Python 2

Chapter 2: The Three Pillars

This book combines three architectural concepts:

1. Domain-Driven Design (DDD) — Where to put business logic

2. Hexagonal Architecture — How to structure the code

3. CQRS — How to separate reads from writes

Each solves a different problem. Together, they create a coherent system.

— — — — —

Pillar 1: DDD — Business Logic in the Domain

DDD answers the question: Where does business logic live?

Answer: In the domain layer.

Not in views. Not in SQLAlchemy models. Not scattered across services. In a dedicated layer that knows

nothing about HTTP, databases, or frameworks.

The Domain Layer Contains:

Entities — Objects with identity that persist over time.

@dataclass

class Booking:

 id: BookingId

 client_id: ClientId

 restaurant_id: RestaurantId

 time_slot: TimeSlot

 party_size: PartySize

 status: BookingStatus

 confirmed_at: Optional[datetime] = None

 _events: list = field(default_factory=list)

 def confirm(self) -> None:

 if self.status != BookingStatus.PENDING:

 raise BookingCannotBeConfirmed(self.id)

 self.status = BookingStatus.CONFIRMED

 self.confirmed_at = datetime.utcnow()

 self._record_event(BookingConfirmed(self.id))

FREE SAMPLE - Pragmatic DDD with Python 3

 def _record_event(self, event: DomainEvent) -> None:

 self._events.append(event)

Value Objects — Immutable objects defined by their attributes.

@dataclass(frozen=True)

class TimeSlot:

 date: date

 hour: int

 minute: int

 def __post_init__(self):

 if self.hour < 0 or self.hour > 23:

 raise InvalidTimeSlot("Hour must be between 0 and 23")

 if self.minute < 0 or self.minute > 59:

 raise InvalidTimeSlot("Minute must be between 0 and 59")

 def is_before(self, other: "TimeSlot") -> bool:

 return self.to_datetime() < other.to_datetime()

 def to_datetime(self) -> datetime:

 return datetime.combine(self.date, time(self.hour, self.minute))

Domain Events — Records of things that happened.

@dataclass(frozen=True)

class BookingConfirmed:

 booking_id: BookingId

 occurred_at: datetime = field(default_factory=datetime.utcnow)

Domain Services — Logic that doesn't belong to any single entity.

class BookingAvailabilityChecker:

 def __init__(self, booking_repository: BookingRepositoryInterface):

 self._booking_repository = booking_repository

 def is_available(

 self,

 restaurant_id: RestaurantId,

 time_slot: TimeSlot,

 party_size: PartySize

) -> bool:

 existing_bookings = self._booking_repository.find_active_by_restaurant_and_time_slot(

 restaurant_id, time_slot

)

 # Business logic for availability

 return existing_bookings.total_party_size() + party_size.value <= 50

What the Domain Layer Does NOT Contain:

• Database queries

FREE SAMPLE - Pragmatic DDD with Python 4

• HTTP concerns

• Framework dependencies

• Email sending

• External API calls

The domain layer is pure business logic. It could run without FastAPI or SQLAlchemy.

— — — — —

Pillar 2: Hexagonal Architecture — Ports & Adapters

Hexagonal Architecture (also called Ports & Adapters) answers: How do I isolate my business logic?

The Core Concept

Imagine your application as a hexagon:

Hexagonal Architecture diagram showing the domain at the center of a hexagon, with incoming adapters (HTTP, CLI,
Queue, Tests) on the left side and outgoing adapters (Database, External APIs, File System) on the bottom

• Inside the hexagon: Your domain logic (pure business rules)

• Ports: Interfaces that define how the outside world interacts

• Adapters: Implementations that connect to specific technologies

FREE SAMPLE - Pragmatic DDD with Python 5

Ports: The Interfaces

Ports are interfaces defined in your domain:

This is a PORT — it's in the Domain layer

from abc import ABC, abstractmethod

from typing import Optional

class BookingRepositoryInterface(ABC):

 @abstractmethod

 def save(self, booking: Booking) -> None:

 pass

 @abstractmethod

 def find_by_id(self, id: BookingId) -> Optional[Booking]:

 pass

 @abstractmethod

 def find_active_by_restaurant(self, id: RestaurantId) -> BookingCollection:

 pass

The domain knows it needs to save and retrieve bookings. It doesn't know how.

Adapters: The Implementations

Adapters live in the infrastructure layer and implement the ports:

This is an ADAPTER — it's in the Infrastructure layer

class SQLAlchemyBookingRepository(BookingRepositoryInterface):

 def __init__(self, session: Session):

 self._session = session

 self._mapper = BookingMapper()

 def save(self, booking: Booking) -> None:

 model = self._session.query(BookingModel).filter(

 BookingModel.id == str(booking.id)

).first()

 if model is None:

 model = BookingModel()

 self._mapper.to_model(booking, model)

 self._session.add(model)

 self._session.commit()

 def find_by_id(self, id: BookingId) -> Optional[Booking]:

 model = self._session.query(BookingModel).filter(

 BookingModel.id == str(id)

).first()

 return self._mapper.to_domain(model) if model else None

FREE SAMPLE - Pragmatic DDD with Python 6

Why This Matters

You can swap adapters without changing business logic:

• Today: PostgreSQL via SQLAlchemy

• Tomorrow: MongoDB via Motor

• Testing: In-memory fake repository

Production

repository = SQLAlchemyBookingRepository(session)

Testing

repository = InMemoryBookingRepository()

The domain code is identical in both cases

booking = repository.find_by_id(booking_id)

booking.confirm()

repository.save(booking)

Your domain is protected from infrastructure changes.

— — — — —

Pillar 3: CQRS — Separating Reads from Writes

CQRS (Command Query Responsibility Segregation) answers: How do I handle the different needs of reading

and writing?

The Problem

Reading and writing have different requirements:

Writing needs:

• Validation

• Business rules

• Transactions

• Event publishing

• Consistency

Reading needs:

• Speed

FREE SAMPLE - Pragmatic DDD with Python 7

• Flexibility

• Joins across multiple tables

• Aggregations

• Pagination

Trying to use the same model for both creates compromises.

The Solution: Split Them

Commands change state:

@dataclass

class CreateBookingCommand:

 booking_id: BookingId

 client_id: ClientId

 restaurant_id: RestaurantId

 time_slot: TimeSlot

 party_size: PartySize

Queries read state:

@dataclass

class GetBookingByIdQuery:

 booking_id: BookingId

Commands Never Return Domain Data

This is a mindset shift. Commands don't return the created entity:

Wrong thinking

booking = command_bus.dispatch(CreateBookingCommand(...))

return {"booking": booking} # What to return?

Right thinking

booking_id = BookingId.generate() # Generate ID first

command_bus.dispatch(CreateBookingCommand(booking_id, ...))

return {"id": str(booking_id)} # Return ID

The ID exists before the command. The command ensures persistence. You already have what you need.

Queries Can Be Optimized Independently

Since queries are separate, you can:

• Use raw SQL for complex reports

FREE SAMPLE - Pragmatic DDD with Python 8

• Join tables from different domains

• Cache aggressively

• Use read replicas

The key is that database access still goes through a Query Repository—a specialized repository optimized for

read operations:

class GetBookingListHandler:

 def __init__(self, query_repository: BookingQueryRepositoryInterface):

 self._query_repository = query_repository

 def handle(self, query: GetBookingListQuery) -> BookingListDto:

 return self._query_repository.find_booking_list(

 restaurant_id=query.restaurant_id,

 page=query.page

)

The repository implementation contains the optimized SQL:

class SQLAlchemyBookingQueryRepository(BookingQueryRepositoryInterface):

 def __init__(self, session: Session):

 self._session = session

 def find_booking_list(

 self,

 restaurant_id: RestaurantId,

 page: int

) -> BookingListDto:

 query = text("""

 SELECT

 b.id,

 b.date,

 b.status,

 c.name as client_name,

 r.name as restaurant_name

 FROM bookings b

 JOIN clients c ON b.client_id = c.id

 JOIN restaurants r ON b.restaurant_id = r.id

 WHERE b.restaurant_id = :restaurant_id

 ORDER BY b.date DESC

 LIMIT 20 OFFSET :offset

 """)

 results = self._session.execute(

 query,

 {"restaurant_id": str(restaurant_id), "offset": (page - 1) * 20}

).fetchall()

 return BookingListDto.from_query_results(results)

This keeps handlers clean and testable while allowing optimized reads. The repository can use raw SQL,

SQLAlchemy ORM, or any other approach—handlers don't care.

— — — — —

FREE SAMPLE - Pragmatic DDD with Python 9

How The Three Pillars Fit Together

Four-layer architecture diagram showing HTTP Layer at top, Application Layer with Commands and Queries in the middle,
Domain Layer with Entities and Value Objects below, and Infrastructure Layer with Repositories and External Services at

the bottom

1. HTTP Layer receives a request

2. Application Layer dispatches a command or query

3. Command handlers use Domain entities and Infrastructure repositories

4. Query handlers use Query Repositories for optimized reads

5. Domain contains business logic, isolated from everything else

6. Infrastructure implements the technical details (including repositories)

— — — — —

A Concrete Example

Let's trace a booking confirmation through all three pillars:

FREE SAMPLE - Pragmatic DDD with Python 10

HTTP Layer (FastAPI)

@router.post("/bookings/{booking_id}/confirm")

async def confirm_booking(

 booking_id: str,

 command_bus: CommandBus = Depends(get_command_bus)

) -> dict:

 command_bus.dispatch(ConfirmBookingCommand(

 booking_id=BookingId.from_string(booking_id)

))

 return {"status": "confirmed"}

Application Layer (CQRS)

class ConfirmBookingHandler:

 def __init__(

 self,

 repository: BookingRepositoryInterface,

 event_bus: EventBus

):

 self._repository = repository

 self._event_bus = event_bus

 def handle(self, command: ConfirmBookingCommand) -> None:

 booking = self._repository.find_by_id(command.booking_id)

 if booking is None:

 raise BookingNotFound(command.booking_id)

 booking.confirm() # Domain logic

 self._repository.save(booking)

 self._event_bus.publish(booking.pull_events())

Domain Layer (DDD)

@dataclass

class Booking:

 id: BookingId

 status: BookingStatus

 confirmed_at: Optional[datetime] = None

 _events: list = field(default_factory=list)

 def confirm(self) -> None:

 if self.status != BookingStatus.PENDING:

 raise BookingCannotBeConfirmed(self.id)

 self.status = BookingStatus.CONFIRMED

 self.confirmed_at = datetime.utcnow()

 self._record_event(BookingConfirmed(self.id))

 def _record_event(self, event: DomainEvent) -> None:

FREE SAMPLE - Pragmatic DDD with Python 11

 self._events.append(event)

 def pull_events(self) -> list:

 events = self._events.copy()

 self._events.clear()

 return events

Infrastructure Layer (Hexagonal)

class SQLAlchemyBookingRepository(BookingRepositoryInterface):

 def __init__(self, session: Session):

 self._session = session

 self._mapper = BookingMapper()

 def save(self, booking: Booking) -> None:

 model = self._session.query(BookingModel).filter(

 BookingModel.id == str(booking.id)

).first()

 model.status = booking.status.value

 model.confirmed_at = booking.confirmed_at

 self._session.commit()

Each layer has one job. Each pillar contributes its strength.

— — — — —

Summary

Pillar Question It Answers Key Concept

DDD Where does business logic live? In the domain layer

Hexagonal How do I isolate business logic? Ports and adapters

CQRS How do I handle reads vs writes? Separate commands and queries

The next chapter explores why this architecture matters—not just for code quality, but for team productivity, AI

assistance, and long-term maintainability.

FREE SAMPLE - Pragmatic DDD with Python 12

Enjoyed this chapter?

The complete book includes 38 chapters covering DDD Building Blocks, CQRS, Hexagonal Architecture,

Testing, Bounded Contexts, Event Sourcing, and AI-assisted development patterns.

Get the full book at:

www.pragmaticddd.com

— — — — —

Promotional Price - $9.99

