FREE SAMPLE

Pragmatic DDD with Python

Al will love your code

by John Macias

Chapter 2: The Three Pillars

Chapter 2: The Three Pillars

This book combines three architectural concepts:

1. Domain-Driven Design (DDD) — Where to put businesslogic
2. Hexagonal Ar chitecture — How to structure the code
3. CQRS — How to separate reads from writes

Each solves a different problem. Together, they create a coherent system.

Pillar 1: DDD — Business Logic in the Domain
DDD answers the question: Where does business logic live?
Answer: In thedomain layer.

Not in views. Not in SQLAIchemy models. Not scattered across services. In a dedicated layer that knows
nothing about HTTP, databases, or frameworks.

The Domain Layer Contains:

Entities— Objects with identity that persist over time.

@lat acl ass
cl ass Booki ng:
i d: Bookingld
client_id: Cientld
restaurant _id: Restaurantld
time_slot: TinmeSl ot
party_size: PartySize
stat us: Booki ngSt at us
confirmed_at: Optional[datetinme] = None
_events: list = field(default_factory=list)

def confirn(self) -> None:
if self.status != Booki ngStatus. PENDI NG
rai se Booki ngCannot BeConfirmed(sel f.id)

sel f.status = Booki ngSt at us. CONFI RVED
sel f.confirmed_at = datetine.utcnow()

sel f. _record_event (Booki ngConfirmed(sel f.id))

def _record_event(self, event: Domai nEvent) -> None:
sel f. _events. append(event)

Value Objects — Immutable objects defined by their attributes.

@lat acl ass(frozen=True)
class TinmeSlot:

date: date

hour: int

mnute: int

def _ post_init__ (self):
if self.hour < 0 or self.hour > 23:
rai se InvalidTi meSl ot ("Hour nust be between 0 and 23")
if self.mnute < 0 or self.mnute > 59:
rai se InvalidTi meSlot("Mnute nust be between 0 and 59")

def is_before(self, other: "TimeSlot") -> bool:
return self.to_datetime() < other.to_datetime()

def to_datetinme(self) -> datetime:
return datetine.conbine(self.date, time(self.hour, self.minute))

Domain Events — Records of things that happened.

@lat acl ass(frozen=True)
cl ass Booki ngConfi r med:
booki ng_i d: Booki ngl d
occurred_at: datetinme = field(default_factory=datetime. utcnow)

Domain Services— Logic that doesn't belong to any single entity.

cl ass Booki ngAvai |l abi | it yChecker:
def _ init__ (self, booking_repository: BookingRepositorylnterface):
sel f. _booki ng_repository = booking_repository

def is_avail abl e(
sel f,
restaurant _id: Restaurantld,
time_slot: TineSlot,
party_size: PartySize
) -> bool:
exi sting_booki ngs = sel f. _booking_repository.find_active_by restaurant_and_ti me_sl ot (
restaurant _id, tinme_slot

)

Business logic for availability
return existing_bookings.total _party_size() + party_size.value <= 50

What the Domain Layer Does NOT Contain:

« Database queries

* HTTP concerns
 Framework dependencies
» Email sending

* Externa API cadls

The domain layer is pure business logic. It could run without FastAPI or SQLAIchemy.

Pillar 2: Hexagonal Architecture — Ports & Adapters

Hexagonal Architecture (also called Ports & Adapters) answers. How do | isolate my business logic?

The Core Concept

Imagine your application as a hexagon:

Hexagonal Architecture
(Ports & Adapters)

DRIVING ADAPTERS DRIVEN ADAPTERS
(Incoming) (Outgoing)
HTTP Database
CEl DOMAIN APls
Ports Ports
Pure Business Logic
Queue (Entities, Value Objects,
Domain Events, Services) Email
Tests
Files

¢ implements

INFRASTRUCTURE

Implements interfaces defined in Domain
(Repositories, Mappers, External Services)

Hexagonal Architecture diagram showing the domain at the center of a hexagon, with incoming adapters (HTTP, CLI,
Queue, Tests) on the left side and outgoing adapters (Database, External APIs, File System) on the bottom

* Inside the hexagon: Y our domain logic (pure business rules)
« Ports: Interfaces that define how the outside world interacts

» Adapters: Implementations that connect to specific technologies

Ports: The Interfaces

Ports are interfaces defined in your domain:

This is a PORT —it's in the Donmin | ayer
fromabc inport ABC, abstractnethod
fromtyping inport Optiona

cl ass Booki ngReposi toryl nt erface(ABC)
@bstract net hod
def save(sel f, booking: Booking) -> None
pass

@bst ract net hod
def find_by id(self, id: Bookingld) -> Optional[Booking]:
pass

@bst r act met hod
def find_active_by restaurant(self, id: Restaurantld) -> BookingCollection
pass

The domain knows it needs to save and retrieve bookings. It doesn't know how.

Adapters: The Implementations

Adapters live in the infrastructure layer and implement the ports:

This is an ADAPTER —it's in the Infrastructure |ayer
class SQLAI chenmyBooki ngReposi t or y(Booki ngReposi toryl nterface):
def __init_ (self, session: Session):
sel f._session = session
sel f. _mapper = Booki ngMapper ()

def save(sel f, booking: Booking) -> None
nodel = sel f._session. query(Booki nghvbdel). filter(
Booki ngMbdel .id == str(booking.id)
). first()

if model is None
nmodel = Booki nghbdel ()

sel f. _mapper.to_nodel (booki ng, nodel)
sel f. _sessi on. add(nmodel)
sel f._session.commit()

def find by id(self, id: Bookingld) -> Optional[Booking]:
nodel = sel f._session. query(Booki nghvbdel). filter(
Booki ngWbdel . id == str(id)
). first()

return sel f._mapper.to_domai n(nodel) if nbdel el se None

Why This Matters

Y ou can swap adapters without changing business logic:

* Today: PostgreSQL via SQLAIlchemy
» Tomorrow: MongoDB via Mator

* Testing: In-memory fake repository

Production
repository = SQ.Al chenyBooki ngReposi t ory(sessi on)

Testing
repository = | nMenoryBooki ngRepository()

The dommin code is identical in both cases
booki ng = repository.find_by_id(booking_id)
booki ng. confirm)

repository. save(booki ng)

Y our domain is protected from infrastructure changes.

Pillar 3: CQRS — Separating Reads from Writes

CQRS (Command Query Responsibility Segregation) answers. How do | handle the different needs of reading
and writing?

The Problem

Reading and writing have different requirements:

Writing needs:

* Validation

* Businessrules

* Transactions

* Event publishing

« Consistency
Reading needs:

oSpwj

* Flexibility

* Joins across multiple tables
» Aggregations

* Pagination

Trying to use the same model for both creates compromises.

The Solution: Split Them

Commands change state:

@lat acl ass

cl ass Creat eBooki ngCommand
booki ng_i d: Booki ngl d
client_id: Cientld
restaurant _id: Restaurantld
tinme_slot: TineSlot
party_size: PartySize

Queriesread state:

@lat acl ass
cl ass Get Booki ngByl dQuery:
booki ng_i d: Booki ngld

Commands Never Return Domain Data

Thisis amindset shift. Commands don't return the created entity:

Wong thinking

booki ng = conmand_bus. di spat ch(Cr eat eBooki ngConmand(. ..))
return {"booking": booking} # Wat to return?

Ri ght thinking

booki ng_i d = Booki ngld. generate() # Cenerate ID first

conmmand_bus. di spat ch(Cr eat eBooki ngConmmand(booking_id, ...))
return {"id": str(booking_id)} # Return ID

The ID exists before the command. The command ensures persistence. Y ou aready have what you need.

Queries Can Be Optimized Independently

Since queries are separate, you can:

* Useraw SQL for complex reports

« Join tables from different domains
* Cache aggressively
» Useread replicas

The key is that database access still goes through a Query Repositor y—a specialized repository optimized for
read operations:

cl ass Get Booki ngLi st Handl er:
def __init_ (self, query_repository: Booki ngQueryRepositorylnterface):
sel f._query_repository = query_repository

def handl e(sel f, query: GetBookingListQuery) -> BookingLi stDto:
return self._query_repository.find_booking_list(
restaurant _i d=query. restaurant _id,

page=query. page

The repository implementation contains the optimized SQL :

cl ass SQLAI chemyBooki ngQuer yReposi t or y(Booki ngQuer yReposi toryl nterface):
def _ init_ (self, session: Session):
sel f. _session = session

def find_booking_list(

sel f,
restaurant _id: Restaurantld,
page: int

) -> Booki ngLi st Dt o:
query = text("""

SELECT
b.id,
b. dat e,
b. st at us,
c.nane as client_nane,
r.nane as restaurant_nane

FROM booki ngs b

JONclients ¢ ON b.client_id = c.id

JO N restaurants r ON b.restaurant _id =r.id
WHERE b.restaurant_id = :restaurant _id
ORDER BY b. date DESC

LIMT 20 OFFSET : of f set

wnw
results = sel f._session. execut e(

query,

{"restaurant _id": str(restaurant_id), "offset": (page - 1) * 20}

).fetchall ()

return Booki ngLi stDto.fromquery_results(results)

This keeps handlers clean and testable while allowing optimized reads. The repository can use raw SQL,
SQLAIchemy ORM, or any other approach—handlers don't care.

How The Three Pillars Fit Together

Architecture Layers

e N\
HTTP LAYER
Controllers receive requests, dispatch commands/queries
\ >
uses
A 4
e N\

APPLICATION LAYER

Commands / Handlers Queries / Handlers

Orchestrates Domain Logic Returns DTOs (can skip domain)

uses

DOMAIN LAYER

Entities | Value Objects | Domain Events | Services

(Pure business logic, no infrastructure dependencies)

F
implements

INFRASTRUCTURE LAYER

Repositories | External APIs | Email | Queues | Cache

(Implements interfaces defined in Domain)

Four-layer architecture diagram showing HTTP Layer at top, Application Layer with Commands and Queries in the middle,
Domain Layer with Entities and Value Objects below, and Infrastructure Layer with Repositories and External Services at
the bottom

1. HTTP Layer receives areguest

2. Application Layer dispatches acommand or query

3. Command handlersuse Domain entities and I nfrastructur e repositories
4. Query handlers use Query Repositories for optimized reads

5. Domain contains business logic, isolated from everything else

6. Infrastructur e implements the technical details (including repositories)

A Concrete Example

Let's trace a booking confirmation through all three pillars:

FREE SAMPLE - Pragmatic DDD with Python

HTTP Layer (FastAPI)

@ out er. post ("/ booki ngs/ {booki ng_i d}/confirni)
async def confirm booking(

booking_id: str

command_bus: CommandBus = Depends(get _comrand_bus)
) -> dict:

command_bus. di spat ch(Confi r mBooki ngConmand(

booki ng_i d=Booki ngl d. from st ri ng(booki ng_i d)
))

return {"status": "confirned"}

Application Layer (CQRS)

cl ass ConfirnBooki ngHandl er:
def __init_ (
sel f,
repository: Booki ngRepositorylnterface
event _bus: Event Bus

self. _repository = repository
sel f._event_bus = event_bus

def handl e(sel f, comrand: ConfirnmBooki ngConmand) -> None
booking = self._repository.find_by_id(comrand. booki ng_i d)

i f booking is None
rai se Booki ngNot Found(command. booki ng_i d)

booki ng. confirm() # Dommin |ogic

sel f. _repository. save(booki ng)
sel f. _event _bus. publi sh(booki ng. pul | _events())

Domain Layer (DDD)

@lat acl ass
cl ass Booki ng
i d: Bookingld
status: Booki ngSt at us
confirnmed_at: Optional[datetine] = None
_events: list = field(default_factory=list)

def confirn(self) -> None
if self.status != Booki ngStat us. PENDI NG
rai se Booki ngCannot BeConfirmed(sel f.id)

sel f.status = Booki ngSt at us. CONFI RVED
sel f.confirmed_at = datetinme.utcnow()

sel f. _record_event (Booki ngConfi rmed(sel f.id))

def _record_event(self, event: Dommi nEvent) -> None

sel f. _events. append(event)

def pull_events(self) -> list:
events = self._events. copy()
sel f. _events. clear()
return events

Infrastructure Layer (Hexagonal)

cl ass SQLAI chemyBooki ngReposi t or y(Booki ngReposi toryl nterface):
def __init_ (self, session: Session):
sel f. _session = session
sel f. _mapper = Booki ngMapper ()

def save(sel f, booking: Booking) -> None
model = sel f._session. query(Booki nghbdel). filter(
Booki nghodel .id == str(booking.id)
). first()

nmodel . status = booki ng. st at us. val ue
nodel . confirmed_at = booking. confirmed_at
sel f._session.commit()

Each layer has one job. Each pillar contributes its strength.

Summary
Pillar Question It Answers
DDD Where does business logic live?
Hexagonal How do | isolate business logic?
CQRS How do | handle reads vs writes?

Key Concept
In the domain layer
Ports and adapters

Separate commands and queries

The next chapter explores why this architecture matters—not just for code quality, but for team productivity, Al

assistance, and long-term maintainability.

Enjoyed this chapter?

The complete book includes 38 chapters covering DDD Building Blocks, CQRS, Hexagona Architecture,
Testing, Bounded Contexts, Event Sourcing, and Al-assisted devel opment patterns.

Get the full book at:

www.pragmaticddd.com

Promotional Price - $9.99

